玻璃纤维的基本性能

碳纤维复合材料在加工过程有其独特的困难和问题,从金属加工积累的经验往往无法解决。刀具、夹具、加工参数,这些方面必须重新考虑。总的说来,复材加工主要需要克服:材料分层、碎裂毛刺、刀具寿命过短。

(一)外观特点
一般天然或人造的有机纤维,其表面都有较深的皱纹。而玻璃纤维表面呈光滑的圆柱体,其横断面几乎都是完整的圆形,宏观来看,表面光滑,所以纤维之间的抱合力非常小,不利于和树脂粘结。由于呈圆柱体,所以玻璃纤维彼此靠近时,空隙填充的较密实。这对提高玻璃钢制品的玻璃含量是有利的。
(二)密度
玻璃纤维的密度较其它有机纤维为大,但比一般金属密度要低,几乎和铝一祥。因此在航空工业上用玻璃钢代替铝钛合金就成为可能。玻璃纤维的密度与成分有密切的关系,一般为2.5-2.7g/cm3左右,但含有大量重金属的高弹玻璃纤维密布度可达2.9g/cm3,一般来说无碱纤维的密度比有碱纤维密度要大,见下表

纤维名称羊毛蚕丝棉花人造丝尼龙碳纤维玻璃纤维玻璃纤维
密度g/cm31.28~1.331.3~1.451.50~1.601.50~1.601.141.4有碱无碱
2.6~2.72.4~2.6

(三)抗拉强度
玻璃纤维的抗拉强度比同成分的玻璃高几十倍,例如有碱玻璃的抗拉强度只有40-100MPa ,而用它拉制的玻璃纤维强度可达2000MPa,其强度提高20-50倍,从下表可以看出,玻璃纤维的拉伸强度比高强合金钢还要高。

 羊毛亚麻棉花生丝尼龙高强合金钢铝合金玻璃玻璃纤维
纤维直径μm1516~5010~2018块状块状块状块状5~8
拉伸强度MPa160~300350300~700440300~600160040~46040~1201000~3000

1、玻璃纤维高强的原因
  许多专家学者对玻璃纤维高强的原因,提出了各种不同假说。
  (1)微裂纹假说
  微裂纹假说认为:玻璃的理论强度取决于分子或原子间的引力,其理论强度很高,可达2000-12000MPa。但实测强度很低,这是因为在玻璃或玻璃纤维中存在着数量不等、尺寸不同的微裂纹,因而大大降低了强度。微裂纹分布在玻璃或玻璃纤维的整个体积内,但以表面的微裂纹危害最大。由于微裂纹的存在,使玻璃在外力作用下受力不均,在危害最大的微裂纹处产生应力集中,从而使强度下降。  玻璃纤维比玻璃的强度高得多,这是因为玻璃纤维高温成型时减少了玻璃溶液的不均一性,使微裂纹产生的机会减少。此外,玻璃纤维的断面较小,随着表面积的减小,使微裂纹存在的几率也减少,从而使纤维强度增高。有人明确地提出,直径细的玻璃纤维强度比直径粗的纤维强度高的原因,是由于表面微裂纹尺寸和数量较小,从而减少了应力集中,使纤维具有较高的强度。  (2)分子取向假说
  分子取向假说认为,在玻璃纤维成型过程中,由于拉丝机的牵引力作用,使玻璃纤维分子产生定向排列,从而提高了玻璃纤维的强度。
  2、影响玻璃纤维强度的因素
  (1)纤维直径和长度对拉伸强度的影响
  一般情况,玻璃纤维的直径愈细,抗拉强度越高,见下表,但在不同的拉丝温度下拉制的同一直径的纤维强度,也可能有区别。
  (2)玻璃液质量对玻璃纤维强度的影响

 457911
拉伸强度MPa3000~38002400~29001750~21501250~17001050~1250

玻璃纤维的拉伸强度和长度有关,随着纤维长度的增加,拉伸强度显著下降,见下表:

玻璃纤维长度(μm)纤维直径(μm)平均拉伸强度(MPa)
5131500
2012.51210
9012.7360
156013720

        直径和长度对玻璃纤维拉伸强度的影响,可以用微裂纹假说来解释。因为随着纤维直径和长度的减小,纤维中微裂纹会相应减少,从而提高了纤维强度
  (3)化学组成对强度的影响
  一般是含碱量越高、强度越低。无碱纤维比有碱纤维的拉伸强度高20%,见下表:

玻璃纤维长度(μm)纤维直径(μm)平均拉伸强度(MPa)
5131500
2012.51210
9012.7360
156013720

1、结晶杂质的影响:当玻璃成分波动或漏板温度波动或降低时,可能导致纤维中结晶的出现。实践证明,有结晶的纤维比无结晶的纤维强度要低。
2、玻璃液中的小气泡也会降低纤维的强度。曾试验用含小气泡的玻璃液拉直径为5.7μm ’的玻璃纤维其强度比用纯净玻璃液拉制的纤维强度降低20%. (4)成型条件对玻璃纤维的影响
实践证明,用漏板拉制的玻璃纤维强度高于用玻璃棒法拉制的纤维。在玻璃棒法中,用煤气加热生产的纤维又比用电热丝加热生产的纤维强度为高。如用漏板法拉制10μm玻璃纤维的强度为1700MPa,而用棒法拉制相同直径的玻璃纤维强度仅为1100MPa。这是因为玻璃棒只加热到软化,粘度仍然很大,拉丝时纤维受到很大的应力;此外玻璃棒法是在较低温度下拉丝成型,其冷却速度要比漏板法为低。
(5)表面处理对强度的影响
在连续拉丝时,必须在单根纤维或纤维束上敷以浸润剂,它在纤维表面上形成一层保护膜,防止在纺织加工过程中,纤维间发生相互摩擦,而损伤纤维降低强度。玻璃布经热处理除去浸润剂后,强度下降很多,但在用中间粘结剂处理后,强度一般都可回升,这是因为中间粘结剂涂层一方面对纤维起到保护作用,另一方面对纤维表面缺陷有所弥补。
(6)存放时间对强度的影响
玻璃纤维存放一段时间后其强度会降低,这种现象称为纤维的老化。主要是空气中的水分对纤维侵蚀的结果。因此,化学稳定性高的纤维强度降低小,如同样存放2年的有碱纤维强度降低33%,而无碱纤维降低很少。(7)施加负荷时间对强度的影响
玻璃纤维强度随着施加负荷时间的增长而降低。当环境温度较高时,尤其明显。可能是吸附在微裂纹中的水分,在外力作用下,使微裂纹扩展速度加快的缘故。
(四)玻璃纤维的弹性   玻璃纤维的延伸率
  纤维的延伸率是指纤维在外力作用下,直至拉断时的伸长百分率。玻璃纤维的延伸率比其它有机纤维的延伸率低,一般为’(左右,其伸长的程度与所施加的力成正比,直到纤维断裂为止,不存在屈服点。负荷去掉后可以恢复原来长度,因此玻璃纤维是完全的弹性体。
(五)玻璃纤维的耐磨性和耐折性
  玻璃纤维的耐磨性是指纤维抗摩擦的能力;玻璃纤维的耐折性是指纤维抵抗折断的能力。玻璃纤维这两个性能都很差。当纤维表面吸附水分后能加速微裂纹扩展,使纤维耐磨性和耐折性降低。为了提高玻璃纤维的柔性以满足纺织工艺的要求,可以采用适当的表面处理。如经0.2%阳离子活性剂水溶液处理后,玻璃纤维的耐磨性比未处理的高200倍,纤维的柔性一般以断裂前弯曲半径的大小表示。弯曲半径越小,柔性越好。如玻璃纤维直径为9μm时,其弯曲半径为0.094mm,而超细纤维直径为 3.6μm时,其弯曲半径为0.038mm。
(六)玻璃纤维的电性能
由于玻璃纤维的介电性好,耐热性良好,吸湿性小,并且不燃烧,所以无碱玻璃纤维制品在电气、电机工业中得到了广泛而有效的应用。
(七)玻璃纤维的热性能
  玻璃纤维的导热性低,特别是玻璃棉制品密度小,寿命长和耐高温,广泛用于建筑和工业的保温、隔热和隔冷,是一种优良的热绝缘材料。
  玻璃的导热系数(即通过单位传热面积13温度梯度为1℃/m ,时间为1h所通过的热量)为0.7-1.28W(m.K),但拉制玻璃纤维后,其导热系数只有0.035W(m.K产生这种现象的原因,主要是纤维间的空隙较大,密度较小。密度越小,其导热系数越小,主要是因为空气导热系数低所致。导热系数越小,隔热性能越好。当玻璃纤维受潮时,导热系数增大,隔热性能降低。
(八)吸声性能
  玻璃纤维还有优良的吸声、隔声性能,在建筑、机械和交通运输方面得到广泛的应用。吸声系数是当声波传到物体表面时,物体表面所吸收的声能与落在表面总声能的比值。   一般材料的吸声系数大小与声源物体振动频率有关。例如用棉花制成的隔声物质,当音频为200HZ 变到1200HZ时,吸声系数可由0.09 变到0.92,所以各种材料的吸声系数都有一定的音频特性。
  玻璃棉的吸声系数、频率特性与玻璃纤维容积密度、厚度、纤维直径等指标密切有关。一般的规律是:随着密度的增加,吸声系数不断增加。

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注